
Introduction to Upsizing Your Visual dBASE Application
Migrating a desktop application to a client/server environment is called upsizing. This Help system is
designed to familiarize the Visual dBASE user with some of the more important upsizing aspects:

 Understanding Connectivity Issues

 Upsizing the Database

 Understanding Connectivity Issues
Borland SQL Links for Windows is a collection of drivers that enable you to connect through the
Borland Database Engine (BDE) to remote database servers: Oracle, Sybase, Informix, Microsoft SQL
Server, and InterBase.
The SQL Link driver provides the connection to the SQL server, translates queries into the appropriate
SQL dialect, and passes them to the SQL database server. When processing is complete, the SQL
database returns the answer to the client in a format that the desktop application can display.
Note: Borland database applications, through the BDE, also support the use of SQL statements

against local (Paradox or dBASE) data. For information on how to use Local SQL with Visual
dBASE, see the Visual dBASE online Help and print documentation.

Through the BDE Configuration Utility, you can set up an alias for each data source to which your
application connects. Visual dBASE client applications can use any network protocol (such as TCP/IP,
Novell SPX/IPX, or NetBEUI) supported by the server, as long as both the server and the client
machines have the proper communication software installed. You must configure the SQL Link driver
for the desired protocol.
For more information about connectivity, see the SQL Links for Windows User's Guide and the help
provided with SQL Links and the BDE Configuration Utility.
To take advantage of Borland SQL Link driver capabilities, Visual dBASE tables should possess both a
unique row identification method and defined row ordering.

Unique Row Identification
Unique row identification is generally recommended on SQL database servers that dBASE accesses.
If the target table contains non-unique records, dBASE cannot absolutely determine which record to
update and the update may fail. Unique row identification can improve performance of dBASE
DELETE and REPLACE operations, in addition to modifications or deletions made on a form or using
BROWSE. (APPEND queries and insertions made using BROWSE or on a form do not require
uniquely identifiable rows.)
Note: Servers that support implicit row identification do not always support it for all server objects. For

example, even if your server supports an implicit unique row identification method for tables, it
may not support one for SQL server views. Your Connecting to... manual notes whether your
server supports an implicit unique row identification method.

Borland SQL Links requires some kind of unique row identification to support full BLOB access for
SQL servers that do not support BLOB handles for random reads and writes. Most SQL servers limit a
single sequential BLOB read to less than the maximum size of a BLOB. In those cases, an entire
BLOB may not be available. To see if your SQL server tables support BLOB handles or identify the
maximum size of a single BLOB read, see your Connecting to... manual.
You can guarantee unique row identification through either a unique index or an implicit row
identification method:

If your target SQL server supports PRIMARY KEYs, you can create the key using Visual dBASE's
Define Primary Key Dialog Box in the Table Designer or the SQL command ALTER TABLE.

Unique indexes are created using the Manage Indexes Dialog Box, the dBASE INDEX command,
or the SQL command CREATE INDEX.

Note: Since Oracle databases support a unique row ID, a unique index is not required.

Defined Row Ordering
SQL Links requires defined row ordering to access a small window of data centered around the current
row location. The window into the server data moves as the current row location moves, and can be
refreshed from the server through the dBASE REFRESH command.
If no defined row ordering is available when data is inserted, SQL Links cannot tell where the SQL
server places the inserted row. Therefore, the row may or may not appear in the set of data as it is
read. This behavior can vary from SQL server to SQL server and even from table to table.
Defined row ordering requires either an index or some other method that identifies individual rows.

Upsizing the Database
Upsizing requires a shift in perspective from the desktop world to the client/server world. To fully
understand the subject requires not only an understanding of the differences between the database
features, but how and where processing takes place.
For example, dBASE databases are conceptually record-oriented, while SQL database servers are
conceptually set-oriented. dBASE databases typically store each table in a separate file, while servers
store all the tables in a database together. On SQL database servers, all processing takes place on the
server in a multi-server environment.
Client/server applications must also address some database issues in an entirely new manner, the
most complex of which are connectivity, network usage, and transaction handling. For more
information, see your SQL database documentation and any of the texts written on these subjects.
Upsizing a database includes the following:

Analyzing the differences between dBASE data and server data
Migrating the data from the desktop to the server
Using the Local InterBase Server (LIBS)

Analyzing the Differences Between Databases
As part of the process of upsizing data from dBASE to an SQL database server, the following issues
must be understood:
Data Type Translations
Referential Integrity
Transaction Control
Data Access Rights
Indexing
Stored Procedures and Triggers
Data Security
Target Server Information

Data Type Translations
Physical data type translations from dBASE tables to other server types:

From
dBASE

To
Paradox

To
Oracle

To
Sybase

To
InterBase

To
Informix

Character Alpha Character VarChar Varying Character

Number Short Number SmallInt Short SmallInt

others Number Number Float Double Float

Float Number Number Float Double Float

Date Date Date DateTime Date Date

Memo Memo Long Text Blob/1 Text

Bool Bool Character{1} Bit Character{1} Character

dbaselock Alpha{24} Character{24} Character{24} Character{24} Character

OLE OLE LongRaw Image Blob Byte

Binary Binary LongRaw Image Blob Byte

Bytes Bytes LongRaw Image Blob Byte
(temp
tables)

Referential Integrity
In SQL databases, integrity constraints are rules that govern columns-to-table and table-to-table
relationships and validate data entries. They span all transactions that access the database and are
automatically maintained by the system. Integrity constraints can be applied to an entire table or to an
individual column. A PRIMARY KEY or Unique constraint guarantees that no two values in a column or
set of columns will be the same.
For information about SQL-database server integrity constraints, refer to your server documentation or
the online help provided with the Local InterBase Server.
dBASE lets you establish integrity constraints for any file type that supports it using the Database
Administration dialog box and choosing Referential Integrity.
Column constraints can be added through the Table Designer.
For more information on integrity constraints in Visual dBASE, refer to the User's Guide.

Transaction Control
SQL database servers handle requests in logical units of work called transactions. A transaction is a
group of SQL statements that must all be performed successfully before the server will finalize (or
commit) changes to the database. Either all the statements will succeed, or all will fail.
Transaction processing ensures database consistency even if there are hardware failures and
maintains the integrity of data while allowing concurrent multiuser access. For example, an application
might update the ORDERS table to indicate that an order for a certain item was taken and then update
the INVENTORY table to reflect the reduction in inventory available. If there were a hardware failure
after the first update but before the second, the database would be in an inconsistent state, since the
inventory would not reflect the order entered. Under transaction control, both statements would be
committed at the same time. Transaction control becomes even more important in a multiuser
application.
In SQL, transactions are explicitly ended with a command to either accept or discard the actions
performed. The COMMIT statement permanently commits the transaction, making changes visible to
all users. The ROLLBACK statement undoes all changes made to the database in the transaction.
Different database servers implement transaction processing differently. For the specifics of how your
server handles transaction processing, refer to your server documentation.
Important areas for understanding transactions:

dBASE transaction management
Transaction isolation levels
Transaction control through the BDE

dBASE Transaction Management
Visual dBASE's file-based method of database management differs significantly from SQLs
transaction-oriented method.
In dBASE changes, additions, and deletions of records are made to the actual tables in which the data
are stored. Record and table (file) locks are applied to insure data integrity by keeping more than one
user from modifying the same record at the same time.
SQL operations always take place within the context of a transaction. In SQL, the user requests a
record or set of records, which are then transparently copied and made available to the user. Changes,
additions, and deletions are made to the copy of the data and only made permanent (committed) when
the transaction is complete. The transaction model includes the ability to apply record locks and table
locks, depending on what the SQL server will support. However, it is the isolation of the transaction
itself that ensures data integrity.
When no explicit transaction occurs, SQL Links manages the SQL server transactions transparently for
the client. Any successful modification of SQL server data is immediately committed to ensure its
permanence in the database. For example, a single REPLACE, a single APPEND, and a single form
edit operation are each individually committed by default.
Visual dBASE implements the dBASE model of direct data manipulation for local data. It also provides
functions that can work in the transaction-oriented format required by SQL, when a supported Borland
SQL Link driver is installed. Visual dBASE supports transactions against both local (dBASE, Paradox)
and SQL server data. It processes local transaction operations itself and passes server transactions to
the SQL server to be processed there.
Visual dBASE replaces the traditional dBASE transaction model with new event-oriented transaction
functions. The new transaction model supports SQL transactions by:

Adding new language elements and transaction functions such as BEGINTRANS(), COMMIT(),
and ROLLBACK()

Using a ROLLBACK() that does not change program flow
Modifying CANCEL so that it does not rollback transactions
Not tracking APPEND FROM

Note: You cannot mix local transactions and SQL server transactions. Once you start a local
transaction with BEGINTRANS() you cannot start an SQL server transaction until you either
COMMIT() or ROLLBACK(). Any such attempt will display an error message.

To create forms that use transactions:
Include BEGINTRANS() in the startup code for a form or as pushbutton for "Starting Changes".
Include COMMIT() in the OnClick event handler for "Finished Changes".
Attach ROLLBACK() to a pushbutton for "Cancel Changes".
Use COMMIT() or ROLLBACK() in the ON CLOSE() event handler to clean up when the form is

closed. If a transaction is not ended properly (by either a COMMIT() or a ROLLBACK()), dBASE displays
the Transaction Active dialog box.

Table-locking Behavior
The SQL Link driver provides the same table locking support as the target SQL server. For information
on locking support for your SQL server, see your server documentation.
In SQL servers that support table locks, locks can be maintained only within the context of a
transaction. A lock is not acquired until after the transaction starts and can be released only when the
transaction ends. When SQL Links acquires a table lock, it automatically starts a transaction if
necessary. When SQL Links is ready to release a table lock, it first commits the transaction and
automatically releases all other locks at the same time. It then automatically re-acquires any remaining
locks.
Note: During the period between the time a lock is released and then re-acquired, it is possible for

another user to change your data. For this reason, it is recommended to either release all table
locks together when the last lock is no longer needed or use explicit SQL transactions instead of
locking entire tables.

Record-locking Behavior
SQL servers lock data as required, depending on the type and granularity of lock supported. SQL Links
offers an additional locking strategy called optimistic locking to provide a generic way to ensuring data
integrity.
Optimistic locking allows a user to modify a local copy of a record, instead of locking a record for the
entire time it is being modified. When the modifications are finished, SQL Links checks the current
"live" data to make sure no other changes have been made in the interim, then modifies the "live" data
based on the changes made to the copy. If the "live" data was changed by someone else, an optimistic
lock failure occurs. The user is notified that someone else has changed the data first. They can then
inspect the new data and decide whether or not to make changes at that time.
The operation is said to be optimistic because it assumes that no other user will change the record.
Optimistic locking enables users to modify data without the performance and concurrency penalty that
comes with locking the data.

Transaction Isolation Levels
A transaction's isolation level determines how it interacts with other simultaneous transactions
accessing the same tables. In particular, the isolation level affects what a transaction reads from the
tables being accessed by other transactions.
Some servers enable you to set the transaction isolation level explicitly in passthrough SQL. If not
specified, passthrough SQL operations will use a server's default isolation level. For more information,
see your server documentation.
dBASE allows you to define the server-level transaction isolation scheme within BEGINTRANS(), as
follows:

Option 0 Use the server-level default isolation level
Option 1 DirtyRead: The transaction can read uncommitted changes to the database by other
transactions. This is the lowest isolation level.
Option 2 ReadCommitted: The transaction can read only committed changes to the database by
other transactions. This is the default isolation level.
Option 3 RepeatableRead: The transaction cannot read other transactions' changes to previously
read data. This guarantees that once a transaction reads a record, it will not change if it reads it
again. This the highest isolation level.

Database servers may support these isolation levels differently or not at all. If the requested isolation
level is not supported by the server, the next highest isolation level is used. The actual isolation level
used by each type of server is shown below:

Sybase and
IsoIation Microsoft
setting Oracle SQL servers Informix InterBase

Dirty read Read
committed

Read
committed

Dirty read Read
committed

Read
committed
(Default)

Read
committed

Read
committed

Read
committed

Read
committed

Repeatable
read

Repeatable
read (READ
ONLY)

Read
committed

Repeatable
read

Repeatable
read

Note: If an application is using ODBC to interface with a server, the ODBC driver must also support
the isolation level. For more information, see your ODBC driver documentation.

Transaction Control Through the BDE
SQLPASSTHRUMODE in the BDE Configuration Utility determines if passthrough SQL and standard
BDE calls share the same database connection. For transactions, this translates to whether
passthrough transactions and other transactions "know" about each other. Only applications that use
passthrough SQL need to be concerned with SQLPASSTHRUMODE.
SQLPASSTHRUMODE can have the following settings:

SHARED AUTOCOMMIT Each operation on a single row is committed. This mode most closely
approximates desktop database behavior, but is inefficient on SQL servers because it starts and commits
a new transaction for each row, resulting a heavy load of network traffic.

SHARED NOAUTOCOMMIT The application must explicitly start and commit transactions. This
setting can result in conflicts in busy, multiuser environments, where many users are updating the same
rows.

NOT SHARED Passthrough SQL and dBASE use separate database connections.
Note: To control transactions with passthrough SQL, you must set SQLPASSTHRUMODE to NOT

SHARED. Otherwise, passthrough SQL and dBASE may conflict.

Data Access Rights
On SQL database servers, a user name and password are usually required to log on to the server. To
access data created on an SQL server from dBASE you must:
1. Define an alias for the database using the BDE Configuration Utility.
2. Use the alias to access the database. If you use OPEN DATABASE to access the database, Visual

dBASE displays a dialog box in which you enter your user name and password. User authentication
is usually created at the server level. For information about user authentication, refer to your server
documentation.

Indexing
On SQL database servers, an index is a mechanism that is used to speed the retrieval of records in
response to certain search conditions and to enforce uniqueness constraints on columns. It serves as
a logical pointer to the physical location (address) of a row in a table. An index stores each value of the
indexed column or columns along with pointers to all of the disk blocks that contain rows with that
column value. On SQL database servers, unique indexes are defined for a table as PRIMARY KEY
and FOREIGN KEY constraints.
Note: Upsizing your Visual dBASE application requires converting indexes dealing with unsupported

index keys such as expression index keys, filters, and UDF's in keys.
For information about how indexes are used in SQL databases, refer to your server documentation.
The Visual dBASE Programmer's Guide discusses working with indexes on non-dBASE tables.
For information about using indexes on tables created in Visual dBASE, refer to the User's Guide and
online Help.

Stored Procedures and Triggers
On SQL databases, a stored procedure is a self-contained server-based program that can take input
parameters and return output parameters to an application. Stored procedures are associated with a
database and are actually part of metadata. For information about how stored procedures are called
from Visual dBASE applications, refer to the Programmer's Guide or the online Help.
On SQL databases, a trigger is a self-contained routine associated with a table or view that
automatically performs an action when a row in a table or view is inserted, updated, or deleted. A
trigger is never called directly. When an application or user attempts to INSERT, UPDATE, or DELETE
a row in a table, any trigger associated with that table and operation is automatically executed or fired.
For information about triggers, refer to your server documentation.

Data Security
In SQL databases, SQL security is controlled at the table level with access privileges, a list of
operations that a user is allowed to perform on a given table or view. The GRANT statement assigns
access privileges for a table or view to specified users or procedures. The REVOKE statement
removes previously granted privileges. Visual dBASE allows you to use the GRANT and REVOKE
statements within the dBASE language.
For information about granting and revoking table access on SQL servers, refer to your server
documentation.

Target SQL Server Information

Item InterBase Oracle Sybase
SQL Link driver
Dynamic Link Library
(DLL) name

SQLD_IB.DLL SQLD_ORA.DLL SQLD_SS.DLL

Case-sensitive for
data?

Yes
(including
pattern
matching)

Yes As installed

Case-sensitive for
objects such as
tables, columns,
indexes?

No No As installed

Does the server
require that you
explicitly start a
transaction for multi-
statement transaction
processing?

Yes Yes Yes

Does the server
require that you
explicitly start a
transaction for multi-
statement transaction
processing in pass-
through SQL?

No No Yes

Implicit row IDs? No Yes No
BLOB handles? Yes No No
Maximum size of
single BLOBs read (if
BLOB handles are
not supported)

32K 64K 32K

Note: InterBase BLOBs have handles. However, InterBase CHAR and VARCHAR columns that are
more than 255 characters long are treated as non-handle BLOBs.

Migrating the Data
The following topics provide tips for dBASE developers who want to migrate to an SQL environment:
Moving the Data
Recreating Your Data Models
Creating Tables on the Server Using Visual dBASE
Establishing a Database Connection in Your Application
Establishing Explicit Transaction Control
Visual dBASE Language Extensions
Using SQL Syntax Within Visual dBASE
Visual dBASE Language Elements that Support SQL Data
SQL Error-handling in dBASE
Multiuser Considerations
Blank and Duplicate Record Handling
Other Considerations

Moving the Data
To copy single dBASE tables to an SQL database server, you can use COPY. The COPY command
not only creates table structures on the database server, but copies records from the source table to
the destination database server.
Batch moves can be performed using APPEND FROM. After server data is established, you can
perform batch uploads to SQL data from dBASE files.
The fastest and most efficient tool for uploading data is the Borland Data Pump. For information about
using the Data Pump, refer to the Data Pump online Help.

Recreating Your Data Models
You can use the Visual dBASE Query Designer to recreate your data models after you have migrated
your data. This allows Forms and Reports that are based on query files to run unmodified.

Creating Tables on the Server Using Visual dBASE
The Table Designer provides a method of creating single tables on SQL database server. The Table
Designer provides access to creating all field types supported on the server.

Establishing a Database Connection in Your Application
To establish a database connection in your application you must first create an alias for the database
using the BDE Configuration Utility and then add OPEN DATABASE and SET DATABASE to the
application program.

Establishing Explicit Transaction Control
To establish explicit transaction control, add BEGINTRANS(), COMMIT(), and ROLLBACK() to each
transaction sequence.

Visual dBASE Language Extensions for SQL
The following Visual dBASE commands support SQL and transaction processing.

Topics
BEGINTRANS()
COMMIT()
EXTERN SQL
OPEN DATABASE
ROLLBACK()
SQLERROR()
SQLEXEC()

Using SQL Syntax Within Visual dBASE
The following list of SQL statements are supported within Visual dBASE:

ALTER TABLE
CREATE INDEX
CREATE TABLE
CREATE VIEW*
DELETE
DROP INDEX
DROP TABLE
DROP VIEW*
GRANT*
INSERT
REVOKE*
SELECT
SET TRANSACTION*
UPDATE

*Not supported for local SQL

Visual dBASE Language Elements That Support SQL
All Visual dBASE data access commands and functions support SQL data. Some of the most useful
are:
APPEND DELETE TAG SET SKIP
APPEND FROM DELETE TABLE USE
BOOKMARK() GO TO <bookmark>
BROWSE INDEX
CLOSE DATABASE OPEN DATABASE
COPY TABLE REPLACE
COPY TO SEEK
CREATE SET DATABASE TO
DELETE SET RELATION
For further information on these commands, see the Visual dBASE Programmer's Guide or online
Help.

SQL Error-handling in Visual dBASE
Example
Visual dBASE dedicates two error codes to retrieve the number and text of SQL server messages.
For a complete list of all Visual dBASE error codes, see the Visual dBASE Programmer's Guide or
online Help.

SQLERROR()
Returns the number of the last server error.

Syntax
SQLERROR()

SQLMESSAGE()
Returns the text of the last server error.

Syntax
SQLMESSAGE()

Other error codes that are especially useful for detecting and handling broken record and file locks are:
DBERROR() - returns BDE error number
DBMESSAGE() - returns BDE error message
ERROR() - returns dBASE error number
MESSAGE() - returns dBASE error message

SQL Error-handling Example
The following example uses SQLERROR() and SQLMESSAGE() to return an SQL error number and
SQL error message to an ON ERROR routine that displays an MDI form with an error report:
ON ERROR DO ErrHndlr WITH ERROR(), MESSAGE(), ;

SQLERROR(), SQLMESSAGE(), PROGRAM(), LINENO()
SET DBTYPE TO DBASE
OPEN DATABASE CAClients
errorCode = SQLEXEC("SELECT Company, City FROM ;

Company WHERE State_Prov='CA'", "StateCA.DBF")
IF errorCode = 0

SET DATABASE TO
USE StateCa
LIST

ENDIF
RETURN

PROCEDURE ErrHndlr
PARAMETERS nErrorNo, cErrMess, nSQLErrorNo, ;

cSQLErrMess, cProgram, nLineNo
DEFINE FORM HeadsUp FROM 10,20 TO 20,55;

PROPERTY Text "Heads Up"
DEFINE TEXT Line1 OF HeadsUp AT 2,10 ;

PROPERTY Text "An Error has occurred",;
Width 24, ColorNormal "R+/W"

DEFINE TEXT Line2 OF HeadsUp AT 4,2;
PROPERTY Text ;
IIF(ERROR()=240,cSqlErrMess,cErrMess),;
Width 33

DEFINE TEXT Line3 OF HeadsUp AT 5,2;
PROPERTY Text "Number: " + ;
IIF(ERROR()=240,STR(nSQLErrorNo),STR(nErrorno)),;
Width 24

DEFINE TEXT Line4 OF HeadsUp AT 6,2;
PROPERTY Text "Program: "+ cProgram,;
Width 22

DEFINE TEXT Line5 OF HeadsUp AT 7,2;
PROPERTY Text "Line #: " + STR(nLineno),;
Width 22

OPEN FORM HeadsUp

Multiuser Considerations
See Also
dBASE can use record locking (RLOCK) to help ensure data integrity in a multiuser environment. This
means that every record update must be checked with ON ERROR or DBERROR() to determine if a
lock was broken prior to completion of the transaction. If the user attempts an APPEND, BROWSE, or
EDIT and the record lock breaks, Visual dBASE displays a dialog box warning the user of the problem.
The user can then retry the update.

See Also
Table-locking Behavior
Record-locking Behavior

Blank and Duplicate Record Handling
In general, SQL database servers that use a primary or uniquely-keyed index do not allow blank or
duplicate records. Primary keys do not allow NULL records (not blank), but unique keys allow unlimited
NULL records. Since BLANK and APPEND for servers default to NULL data, no errors should be
encountered on a unique key; however, they would occur on a primary key. If the user attempts to
create such a record with APPEND, BROWSE or EDIT, Visual dBASE displays a dialog box warning
the user of the problem. The user can then retry the update. If the user attempts to create a blank or
duplicate record outside APPEND, BROWSE or EDIT, Visual dBASE issues an error.

Other Considerations
Add error handling for REPLACE errors (broken locks) with ON ERROR and/or DBERROR().
Replace any use of RECNO() with BOOKMARK().
Determine what dBASE file structures are unsupported on the target server; for example, multiple
memos are unsupported on an Oracle table.
New and existing Visual dBASE applications that use the RLOCK() function will need additional error
checking when used with SQL databases.

Using the Local InterBase Server
The Local InterBase Server (LIBS) is a version of the Borland InterBase Workgroup server that runs on
Windows 3.1. It provides all of the features of a SQL server for local, single-user operation. For more
information on the Local InterBase Server, see the Local InterBase Server User's Guide.
The Local InterBase Server can be for client/server development as:
A local environment for building an application to access any server.
An intermediate step for building an application to access the InterBase Workgroup server.

Building an Application to Access Any Server
If you are developing a client/server application, you can use the Local InterBase Server (LIBS) for
local development and prototyping, even if the production database will run on another server.
If the production database already exists on a database server, you can use the Local InterBase
Server as follows:
1. Use your server's tools to create an SQL data definition script for the database. Remove any non-

standard SQL syntax that will not work with InterBase. Generally, this means removing stored
procedure definitions and other advanced features and mapping data types to InterBase data types.

2. Use the LIBS tool, Windows ISQL, to create a local InterBase database then execute the SQL script
to define the database. For information on using Windows ISQL, see the Local InterBase Server
User's Guide or the online help provided with Windows ISQL.

3. Populate the database with representative data using dBASE methods or the Borland Data Pump.
4. Create a dBASE database application that uses the Local InterBase Server database as a data

source.
If the production database does not already exist, you can first define a prototype database on LIBS
and develop the application locally. Simultaneously, you can define a congruent database on the target
server. Finally, you can redirect the application to access the database on the target server.

Building an Application to Access InterBase
To build an application that accesses a production database that already exists on an InterBase
Workgroup server:
1. Use the InterBase database backup utility to create a backup of the database, using the "Backup

Metadata Only" option. This will save the structure of the database, but not the data (which may be
huge). For information on how to do this, see the Local InterBase Server User's Guide or the online
help provided with the Server Manager.

2. Restore the database to the Local InterBase Server. This will be the development platform.
3. Populate the database with a modest amount of representative data. Your application will access

this data during the development and testing process. Because it is "dummy" data that is not
connected to the production database, there is no chance that the production database will be
corrupted. Your application can access any server features present in the production database,
including stored procedures.

Once the application has been sufficiently tested against the development database, configure your
dBASE application to use an alias that refers to the production server. It is recommended to first test
the application against a duplicate of the production database on the server.
To build an application that will access a database that does not already exist on an InterBase
Workgroup Server, use the Local InterBase Server (LIBS) as an intermediate data source. This
enables you to address all the SQL development issues separately from connectivity and client/server
issues. The steps include:
1. Defining the database on the Local InterBase Server.
2. Developing the application against the LIBS database.
3. Migrating the LIBS database to the target server.
4. Redirecting the application to access the target server.

